
MIGRATION OF LEGACY WSR-88D ALGORITHMS AND PRODUCT
GENERATORS TO THE OPEN SYSTEM

Zhongqi Jingls, Steve Smith’, Michael Jain3 and Allen Zahrai3

‘Cooperative Institute for Mesoscale Meteorological Studies,
University of Oklahoma, Norman, Oklahoma

*NOAA/NWS/WSR-88D Operational Support Facility
3NOAA/ERUNational Severe Storms Laboratory

Abstract

A substantial part of the current Weather
Surveillance Radar-1988 Doppler (WSR-88D) Radar
Product Genration (RPG) software consists of the
product generation and meteorological algorithms,
which were implemented through about 50 tasks.
These tasks, written in FORTRAN with
CONCURRENT extensions and running under the
CONCURRENT 0 3 3 2 operating system (OS), can not
be directly compiled and run under a UNIX OS. Inter-
task communication is implemented through using
shared memory segments, requiring all tasks to be
running on the same computer hardware. Tasks must
fit into a predefined data flow network and are
controlled by a central control module. This makes the
system sensitive to task failure and difficult to be
dynamically reconfigured (redistributing the tasks
among hosts, adding new tasks and so on). These tasks
contain sophisticated algorithms and lengthy code.
Rewriting these tasks would require a substantial
programming and verification effort and cause
maintenance problems in the transition period when
both current and the ported versions had to be
maintained. On the other hand,‘these tasks use a
similar coding structure and application programming
interface (API) and requires minimal system support,
which makes direct porting feasible. After some path-
finding work, we decided to take a direct porting
approach to migrate these tasks to the Open Sytem
RPG (ORPG). The porting approach is unique in that
only a single version of the source code is maintained.
The ported version uses the original RPG code without
any change for all subroutines except the main
subroutine, which is replaced by a new version. A

Corresponding author address: Zhongqi Jing,
National Severe S t o m Laboratory, 13 13 Halley
Circle, Norman, OK 73069-8480; e-mail
<jing@nsslsun.nssl.uoknor.edu>

318

preprocessor is developed to convert the
CONCURRENT FORTRAN code to a standard
FORTRAN code, that can be compiled on a UNIX
machine. This converted version is used only
temporarily at compile time. A set of supporting
functions, emulating the current RPG API, is
developed to provide data flow and processing control
support. All inter-process data exchanges are
implemented through message passing in the
supporting functions. “Wrapped” by the new
supporting functions, the tasks turn into independent,
data driven and dynamically relocatable components
that can be used in a distributed environment.

1. Introduction

As part of the NEXRAD product improvement
effort [Saffle and Johnson, 19971, the current WSR-
88D Radar Product Generator (RPG) software is being
migrated to the open system computing environment. A
substantial part of the RPG software consists of the
product generation and meteorological algorithms,
which was implemented through more than 50 tasks.
These tasks, written in FORTRAN with
CONCURRENT extensions and running under the
CONCURRENT OS32 operating system (OS), cannot
be directly compiled and run under a UNIX OS.
Inter-task communication is implemented through the
use of shared memory segments, requiring all tasks to
run on the same computer hardware. Tasks must fit into
a predefined data flow network and are controlled by a
central control module. This design makes the system
sensitive to task failure and difficult to be dynamically
reconfigured (redistributing the tasks among multiple
hosts, adding new tasks, and so on).

The WSR-88D product generation and
meteorological algorithm t s contain sophisticated
algorithms and lengthy code. Rewriting these tasks
would require a substantial programming and
verification effort and cause maintenance problems in

CH36015-97/0000-0318 $1.0001997 IEEE

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on June 12, 2009 at 16:11 from IEEE Xplore. Restrictions apply.

the transition period when both current and the open
system RPG versions have to be maintained.

On the other hand, these tasks use a similar coding
structure and application programming interface (API)
and require minimal system support, which makes
direct porting feasible. After some path-finding work,
it was decided to take a direct porting approach to
migrate these tasks to the open system RPG. In this
paper we describe the porting approach and discuss
some of the related issues.

In the following we designate the existing RPG
and the Open System RPG under development by RPG
and ORPG respectively.

2. The Porting Methodology

The porting approach we adopted was designed to
meet the following goals:

The modification to the existing code should be
minimized such that the amount of verification
work for the ported code can be significantly
reduced.
The ported software should run in a distributed
environment and fully support dynamic system
reconfiguration. The ported software must be able
to run together with any new ORPG
product/algorithm tasks.
Only a single version of the RPG source code
needs to be maintained, which means that the
ported code can still be compiled and run on the
CONCURRENT OS132 operating system.
The ported source code can be compiled by any
ANSI FORTRAN compiler and run on any
POSIX compliant OS environment without
substantial modification.
The ported software should run efficiently in terms
of the use of hardware resource.

To meet these requirements, it was decided to
preserve the current RPG task partition. That is each
current RPG task will be individually ported and
compiled to generate a corresponding ORPG task. The
inputs and outputs of each ported task will be identical
to those of their RPG version.

The RPG tasks are controlled by a central control
module. In the distributed ORPG, however,
product/algorithm tasks are running in a data-driven
environment [Jain, et. al., 19971. This will require
changes in the task control part of the code. We thus
must write a new task control routine to replace the old

one in the main function. With this exception, the
remaining W G modules are directly ported without or
with minor modifications. By direct porting, we mean
that the modules are simply copied over and compiled
on an ORPG host.

The RPG FORTRAN code contains non-standard
extensions that may not be supported by the
FORTRAN compiler on an ORPG machine. A
FORTRAN preprocessor can be developed to convert
the existing code to an ANSI FORTRAN version
which can be compiled by any FORTRAN compiler
that supports the standard. The conversion is conducted
at compile time and the converted version is discarded
after compilation. Only the original RPG source code
is maintained. The preprocessor can be ported to
different platforms while the RPG code does not need
to be modified.

To guarantee that the ported code can still be
compiled by the CONCURRENT OS/32 FORTRAN
compiler, any modification to the ported code must be
transparent to the CONCURRENT compiler. This is
done by defining special preprocessor directives that
make the modifications appear as comment lines to the
CONCURRENT compiler.

The RPG uses data buffers, allocated in shared
memory and managed by a buffer control module, for
passing radar data and products among tasks. The
ORPG relies on similar data buffers, implemented by
a data management tool called Linear Buffer (LB), to
perform this task [Jain, et. al., 19971. Functionally the
LB is used in the same way as the RPG data buffers are
used, which makes the porting easier. One of the
differences however is that the LB supports distributed
applications while the RPG data buffer mechanism
does not. An LB is a self-controlled data store and
communication object that does not require a control
module to support it. This characteristics improves the
robustness of the system. Moreover, each LB stores a
sequence of products for a given product type. This
provides the potential of dynamically relocating tasks
and buffers without loosing data. For more discussions
on the Linear Buffer, refer to [Jain, et. al., 19971 .

Shared data, such as adaptation data, scan
summary information, and product generation control
information, are stored in shared common blocks in the
RPG. In the ORPG, those are stored in corresponding
LBs and can be accessed by all ORPG tasks. For the
ported tasks, each of them will have their own common
blocks allocated. A mechanism can be built to
automatically update the local common blocks by

319

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on June 12, 2009 at 16:11 from IEEE Xplore. Restrictions apply.

data from the LBs. This mechanism can be
nt to the RPG tasks, requiring no modification

to the ported code.

RPG tasks also use shared common blocks for
passing data between tasks. These common blocks are
identified as Inter-Task Common blocks (ITCs). This
kind of interprocess communication must also be

by explicit message passing. Additional LBs
ed for implementing the ITCs. Message

passing via these LBs, when activated by product
generation or data flow events, can be automatically
processed without requiring any change to the RPG

other cases, function calls may be inserted into
code to activate ITC reading and writing.

A library of functions, emulating the current RPG
API, will be developed to provide data flow and
processing control support as well as automatic update
of local shared common blocks. By linking with these
functions, changes to the ported code can be minimized
and in most cases it can be eliminated. Most of the
supporting functions may be conveniently written in C.
However, calling conventions between C and
FORTRAN functions are non-standard. To maximize
portability, we must keep the set of necessary
conventions to its minimum.

In addition, CONCURRENT OS32 specific
stem functions must be implemented to support the

3. The Porting Procedure

Porting an W G task involves the following steps:

Get a copy of all RPG modules required for
building the task.

0 Identify all input and output buffer types,
adaptation blocks and other shared data blocks, all
ITCs and the data flow timing of the task.

0 Write a new main function which contains
statements providing the information identified in
the previous step to the supporting modules,
followed by a main processing loop.
Modify remaining RPG modules if necessary.
Compile the code using the preprocessor and the
local FORTRAN compiler and generate the
executable by linking the compiled object files and
the supporting libraries.

As an example, the following is the new main
function of the 'hail" task that implements the hail
algorithm:

0

IMPLICIT NONE

$INCLUDE rpg_port.inc,**rpg_port

C adaptation common blocks
$INCLUDE a309adpt.inc,**A3CD7OCA

$INCLUDE a309adpt.incr **A3CD70C2
; SITEADP

; CP15ALG

$INCLUDE A309.INC/G,**A3PMOO
$INCLUDE itc.inc,**A315TRND

integer param ; return
value from A31519 call

; * * specify inputs and outputs
call input-data (CENTATTR,

call input-data (TRFRCATR,

call output-data (TRENDATR,

call output-data (HAILATTR,

VOLUME-DATA)

VOLUME-DATA)

VOLUME-DATA)

VOLUME-DATA)

; * * register adaptation blocks
call register-adpt (SITEADP,

call register-adpt (CPlSALG,
SITEADP-FIRST, BEGIN-VOLUME)

CP15ALG-FIRST, BEGIN-VOLUME)

;register ITC inputs
call itc-input (A315TRND,

1 TRFRCATR)
A315TRNDPFIRST, A315TRND-LAST (2 .1,

call task-initialize
(VOLUME-BASED)

; ** The main loop, which will
never end
10 call wait-for-activation
(WAIT-ALL)

call
A31519-BUFFER-CONTROL(param)

got0 10

stop
end

In the above code listing we can see that some of
the CONCURRENT FORTRAN features are used: The
inline comment and the $INCLUDE directive. Note
that the RPG include files are used and the RPG
functions are c nclude files are define

that this task has two inputs, CENTATTR and
TRFRCATR, which are expected to be available on a
volume basis. Calling subroutine input-data will cause
the supporting modules to monitor these two input

320

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on June 12, 2009 at 16:11 from IEEE Xplore. Restrictions apply.

products and activate this task for generating its outputs
when the inputs are ready. This task will generate two
products called TRENDATR and HAILA'ITR. Both
are volume based products. Because this task needs two
adaptation data blocks, SITEADP and CPl SALG,
subroutine register-adpt is called to tell the supporting
modules that the two adaptation data common blocks
need to be automatically updated at the beginning of
every volume. The hail algorithm needs data provided
in a common block called A315TRND. Since the data
in this common block are generated by another task, we
must define this common block as an ITC. By calling
itc-input we tell the supporting modules that ITC
A315TRND is used as an input and its contents need to
be updated when input TRFRCATR is read in. The
initialization is then completed by calling
"task-initialize", which also specifies that this task
processes data by volume.

Following the initialization is the main processing
loop. In this loop, we first call wait-for-activation to
pass program control to the supporting modules. When
this task needs to be activated for processing (the
outputs are scheduled and the inputs are available),
wait-for-activation will return and we then call
A3 15 19-BUFFER-CONTROL to perform the
processing tasks and generate the outputs. After
A3 1519-BUFFER-CONTROL finishes, the control
is passed to the supporting modules again through
calling wai-for-activation. This loop will last until the
task is terminated.

The new main function, called hail.ftn, is
compiled, for example on an HP workstation, by
commands

ftnpp -DHPUX -I
/users/jing/rpg/include hail.ftn

fort77 -c -K +U77 hai1.f

where "ftnpp" is the preprocessor, "fort77" is the HP
FORTRAN compiler and "hai1.f" is the ANSI
FORTRAN file generated by "ftnpp". For this task,
there is no change needed for the remaining 9 ported
RPG modules (a31509.ftn, a31519.ftn, etc.). These
modules are then compiled in a similar fashion. And
finally the executable "hail" is created by linking the
object files and the supporting libraries:

fort77 -0 hail -K +U77 hai1.o
a31509.0 a31519.0 a31529.0 a31539.0
a31549.0 a31559.0 a31569.0 a31579.0
a31599.0 -L/users/jing/lib/hpux
-1rpgcm -1rpg -1lb -1misc -1m

where I'rpgcm" is a library containing all RPG shared
functions (A3CMnn.FTN), "rpg" is the library
containing all RPG supporting modules, "lb" is the LB
library and "misc" is a library containing some general
ORPG utility routines, which are invoked by "rpg" and
"lb".

4. The Preprocessor

The RPG FORTRAN code contains non-standard
CONCURRENT extensions, which can not be
processed by an ANSI FORTRAN compiler. Some of
the extensions are useful for improving the code
readability and maintainability. For example the
$INCLUDE directive is very important in defining
global constants and variables. We would like to keep
taking advantage of these features. Moreover, we
prefer, if possible, to maintain only a single version of
the RPG code, which can be compiled on both an
ORPG machine and the CONCURRENT machine.
This will make the verification and future RPG version
upgrades easier. Maintaining the same look and feel of
the FORTRAN RPG code is also desirable for
algorithm developers and maintainers. To reach these
goals, a preprocessor has been developed for
converting the CONCURRENT FORTRAN code to
ANSI FORTRAN code at compile time.

The preprocessor reads the CONCURRENT
FORTRAN code and generates the ANSI FORTRAN
code for the ORPG compiler. The ANSI FORTRAN
code is discarded after the code is successfully
compiled. The preprocessor processes the following
non-standard features:

0 $INCLUDE files.
0 CONCURRENT specific directives such as

$INLINE, $INSKIP and $TCOM.
The debugging print statement led by the "X"
character.

0 Non-standard hexadecimal constants of format
Y'n' and Zn, where "n" is a hexadecimal constant.

0 In-line comment proceeded by ";".

The preprocessor resolves $INCLUDE directives
recursively and eliminates any duplicated inclusion.
CONCURRENT specific directives such as $INLINE,
$INSKIP and $TCOM are simply ignored. The block
data files are processed as include files because the
block data usage is not explicitly specified in the code,
which can be a source of error. Other undocumented
features that are not accepted by an ORPG compiler
must also be processed.

32 1

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on June 12, 2009 at 16:11 from IEEE Xplore. Restrictions apply.

The preprocessor supports special directives for
making necessary changes in the ported code. They
allow the modifications in the ported code to be
transparent to the CONCURRENT compiler.

In certain cases an identifier needs to be replaced
by a different one. For example, the RPG code may use
an intrinsic function called “INT2” which is not
supported by an ORPG compiler. We may then replace
it by “INT. The preprocessor supports identifier
replacement. Any preprocessor features that involve
code changes, however, are used with caution because
they can introduce inconsistencies between the ported
and the original versions. They are only used when they
are absolutely necessary.

The preprocessor also supports directives that
allow compile time code segment selection similar to
#indef ... #else ... #endif in the C preprocessor. This
increases the portability of the source code.

5. The Supporting Library

A ported RPG task must be able to run in the
ORPG environment. Specifically any interaction with
the RPG monitor and control module and the buffer
control module must be replaced by an interaction with
the ORPG infrastructure. Note that in the ORPG,
which uses an IN”ERNET/WEB model; a task can and
must work without direct interaction with other ORPG
tasks. For example, if a task needs adaptation data, it
must explicitly read it from the LB storing these data.
For a ported RPG productlalgorithm task, it must read
in the necessary adaptation data, the product generation
control information and other system configuration and
control information. It must also find the availability
information of the products it wants to use as inputs.
When the inputs are available, it must then read them in
for processing. It must determine what to do when
exceptional situations occur. For example, it must abort
the unfinished processing if the volume scan is
restarted or the task generating its input fails.

Fortunately all of these ORPG “burdens”, which
are tradeoffs for distributed processing, geater
flexibility and expand ability, as well as fault tolerance,
can be performed automatically and hidden in

rting library functions.

To ease the porting effort and minimize changes to
the RPG code, most of the functions, which the RPG

use to interact with the RPG
module and the bu€fer control

in the ORPG environment with

identical MI. This is essentially an implementation of
the existing RPG API in the OWG system.

OS/32 specific system
functions are emulated to support porting RPG
productlalgorithm tasks. The RPG API functions and
the OS/32 functions are parts of the supporting library.

The following is a brief description of the
functions in the supporting library.

0 Inputloutput data type registration

The input and output data typ
registered in the supporting modu
is used in processin ontrol and input data
synchronization. The 0 uses a data driven model
for product/algorithm task control. Each task is
activated by a unique input called the driving input.
Other inputs are used in synchronization with the
driving input. The driving input is processed
sequentially. If a discontinuity in the driving input is
detected, a processing abort may result.

In ORPG, all RPG products as well as
intermediate products are treated as ORPG products.
They are identified by their RPG buffer type number.
Each ORPG product is stored in an individual LB. The
product time is used as the message ID in the LB for
convenient product retrieval. Each ORPG product has
an ORPG product header for additional control and
data information.

0 Adaptation data and the scan summary table

The RPG adaptation data is organized into several
common blocks, e.g. COLRTBL, RDACNT,
CP13ALG and so on. The ORPG uses an LB to
distribute the RPG adaptation data to tasks. The RPG
scan summary table is implemented via an ITC for
supporting ported RPG tasks. The
automatically update s adaptation data blocks
and the scan summary r the ported tasks.

0 Task initialization

environment. This function also establishes the task
type. The concept type is used in processing
control. For e , if a task is of
VOLUME-BASED type, it can not start processing
data in the middle of a volume scan after task start up
or a processing abort.

322

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on June 12, 2009 at 16:11 from IEEE Xplore. Restrictions apply.

0 Product generation control

The ORPG uses a product request LB to store
product generation control information. For each
product, a message containing a list of requests may be
stored in the LB. Product request messages are
identified by the product ID numbers. A request may
specify an elevation at which the product is requested.
It may also specify a user defined window if the
product is window based. All products' generation can
be controlled through requests and each product is
controlled individually.

Subroutine wait-for-activation is designed for
processing scheduling. wait-for-activation suspends
the processing and keeps track of the input data flow
and the user product requests. If an output is requested
or scheduled to be generated and the required input
data are ready, wait-for-activation will return and the
productlalgorithm task's main processing routine will
then be activated. The processing routine reads the
input by calling get-inbuf and processes the data until
all output products are generated.

0 Buffer control support

RPG tasks rely on buffer control functions to get
inputs, generate outputs and allocate scratch working
areas. The RPG buffer control' functions,
A3 12 12_REL_INBUF, A3 12 1 LGET-INBUF,
A 3 1 2 1 5 _ - G E T _ O U T B U F a n d
A3 1216-REL-OUTBUF are supported in the
supporting library. These functions emulate their
original buffer control functions with enhanced abort
processing support.

0 Inter-Task Common block (ITC) support

The RPG tasks use common blocks in global
shared memory, called ITCs, to exchange data among
tasks. In ORPG, I T data are exchanged through LBs.
When data in an ITC are ready, they are written out as
a message to an LB and they are then read by other
tasks that need the data. Each ITC is assigned a unique
ITC ID number, which is used for identifying the LB
that stores the message and the particular message in
the LB. Multiple ITCs can be implemented with a
single LB.

Functions itc-input and itc-output are used for
informing the supporting modules that certain ITCs are
used by the task and they need to be automatically
updated or written out at scheduled times. Functions
itc-read and itc-write provide explicit accesses to the

ITC LB. In cases the scheduled automatic
read-idwrite-out is not sufficient, one can customize
ITC readindwriting by inserting the itc-readlitc-write
calls into the RPG code.

0 RPG control and monitor function support

A product/algorithm processing procedure has to
be aborted in several circumstances, which include
elevatiordvolume scan restart, load shed and task
failure. When the supporting modules detect an abort
situation, get-inbuf will return with STATUS set to
TERMINATE. This STATUS return will cause the
task to terminate the current unfinished processing
procedure, free allocated resources, clean up and set up
the next processing resumption time.

0 OS32 FORTRAN extension and system functions
support

OS32 FORTRAN extension and OS32 system call
functions must be emulated. Because the number of
these functions is quite large and some of them may be
difficult to emulate in a different OS, the approach we
took is to implement those that are found to be
necessary. Examples of supported functions include:

btest, bclr, bset, ilbyte and isbyte
lokon and lokoff
date, iclock and wait
sndmsg and queue
deflst, atl, abl, rtl, rbl and lstfun

6. Summary

A direct porting approach to migrate the legacy
WSR-88D algorithm and product generators to the
Open Systems W G is described. The approach
implements a "true" porting of the RPG FORTRAN
code to the Open Systems environment in the sense that
most of the code is simply copied over, compiled and
ready to run. Only a single version of the RPG code,
which works on both the current legacy hardware and
the distributed open system environment, needs to be
maintained. Since the basic processing routines are not
modified in the porting, a full scale verification of the
ported code is not necessary. The ported
produdalgorithm tasks offer full advantage of the
distributed processing and are able to run together with
new ORPG product generators and meteorological
algorithms .

323

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on June 12, 2009 at 16:11 from IEEE Xplore. Restrictions apply.

3. nts

authors would like to acknowkdge the Office
of Systems Development of the National Weather
Service for funding this project.

8. References

papers incIuded ia this
49"' IEEE NAECON,

324

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on June 12, 2009 at 16:11 from IEEE Xplore. Restrictions apply.

