Weather Radar's Perspective on Wind Farms

By Geoffrey Grochocinski Intern Meteorologist National Weather Service, Grand Forks, ND

The Wind Energy Industry and its Benefits

- Renewable and relatively clean energy
- Provides "green collar" jobs
- Low operating costs
- Reliable in windy places such as North Dakota
- Allows nearby land to remain in agricultural use
- Can provide economic benefits in the form of property taxes and annual landowner payments

The Weather Radar and its Benefits

- It is a key tool of weather forecasters in the preparation of forecasts and severe weather warnings.
- It is designed to detect weather targets and storm scale winds at long ranges.
- It is sensitive enough to depict clear-air (cloud/rain free) boundaries, such as temperature and humidity discontinuities. Example: Fronts

Common Goals Between the Wind Energy Industry and Meteorological Community

- Enhancing the Nation's economy through cost savings (one through cheap, renewable energy, the other by providing a strategic means to plan operations around the weather).
- Improving the quality of life (one through providing a cleaner source of energy, the other through protecting life and property).

Wind Farm Impacts to the Weather Radar

- Moving turbine blades, unlike stationary objects like buildings, appear as weather on the radar. Current technology cannot successfully eliminate the "clutter".
- Potential misinterpretation or masking of thunderstorm and/or winter storm characteristics
- Potential reduction of storm warning effectiveness near and downrange of a wind farm
- False radar-based precipitation estimates, which could impact flash-flood warning effectiveness and contaminate data

ESTIMATED WIND TURBINE IMPACT

IMPACTS up to 3km

- --Radar Receiver Damage (within 200 m)
- --Radar Beam Formation (within 1.5 km)
- --Partial Attenuation of Radar Beam (within 3 km)
- --Limited or No Workarounds for WFOs

Distance between Wind Farm & Radar (Kilometers)

The Impact of the Carroll County, IA Wind Farms on the Des Moines WFO's WSR-88D Doppler Weather Radar
July 19, 2007

By Karl Jungbluth Science and Operations Officer (SOO) National Weather Service, Des Moines, IA

Reflectivity – 02:36 Zulu July 19, 2007

- Real storms or wind farms?
- Caused confusion to an emergency manager
- Question sent to webmaster from a confused user unable who had trouble differentiating between storms and false echoes

Reflectivity – 02:36 Zulu July 19, 2007

- having difficulty differentiating between weather and wind farms.
- have difficulty getting accurate echoes near or downrange of medium to high impact wind farms.

Radar Estimated Storm Total Precipitation 05:12 Zulu July 19, 2007

More Examples

Reflectivity from the Fort Drum, NY WSR-88D Radar 12:34 Zulu March 10, 2007

Reflectivity from the Fort Drum, NY WSR-88D Radar 12:34 Zulu March 10, 2007

False Tornado Alert on Dodge City, KS WSR-88D Radar 01:50 Zulu February 23, 2007

NWS's Radar Operations Center (ROC)

- A sub-entity within the NWS that provides centralized meteorological, software, maintenance, and engineering support for the network of WSR-88D weather radars.
- It assesses impacts wind farms will have on weather radars.
- It helps to find mutually beneficial solutions for wind farm developers and radar users/operators.
- It educates the public and developers about wind farm and weather radar interaction.

ROC and Wind Farm Siting Proposals

- Formal Process: Developers voluntarily submit wind farm proposals to the Department of Commerce, a process recognized by the American Wind Energy Association's Wind Siting Handbook. The ROC then becomes involved in finding solutions.
- Informal Process: Local NWS offices send local news about wind farm development to the ROC. The ROC then contacts the developers.

Radar Horizon

Radar Line of Sight (RLOS)

- The ROC uses a GIS database (made from the Space Shuttle Radar Topography Mission) to create RLOS maps for weather radars.
- RLOS maps delineate areas corresponding to turbine heights of 130, 160, and 200 meters above ground level (AGL).

Typical RLOS Map

Considerations in ROC Analyses

- Distance of the radar to wind turbines
- Maximum height of wind turbine blades
- Blade intrusion into the RLOS
- Elevation of local WSR-88D radar
- Terrain
- Size of the Wind Farm
- Wind farm orientation to the radar
- Severe weather climatology
- Operational experience of the meteorologists

United States Wind Power Potential

North Dakota Wind Power Potential

Mayville, ND KMVX WSR-88D Weather Radar

- Our local NOAA Doppler Radar about 30 miles southwest of Grand Forks
- 986 feet above sea level (ASL)
- About 94 feet tower to the center of the radar dome
- Radar beam departs at a height of about 1,080.4 feet

Mayville KMVX WSR-88D RLOS Map

Ashtabula Wind Energy Center

- Low Impact
- 148.5 MW wind farm near Lake Ashtabula
- ~35 to 42 nautical miles from Mayville Radar
- Operational Nov 2008
- 99 turbines (1.5 MW each)
- ~262 feet tall from the ground to the hub
- Shorter blades...~120 feet long
- Blades reach ~382 feet AGL heights

Langdon Wind Energy Center

- Very Low Impact
- 159 MW wind farm near Langdon, ND
- ~? Nautical miles from the Mayville Radar
- Operational Jan 2008
- 106 turbines (1.5 MW each)
- ~262 feet tall from the ground to the hub
- Shorter blades...~120 feet long
- Blades reach ~382 feet AGL heights

Mayville KMVX WSR-88D RLOS Map

Mayville KMVX WSR-88D RLOS Map

Luverne Wind Farm

- Low to Medium Impact
- 169.5 MW wind farm near Luverne, ND
- Closest...~29 to 33 nautical miles from Mayville Radar
- Newest to region...Operational Sept 2009
- 105 turbines (1.5 MW each)
- ~262 feet tall from the ground to the hub
- Longest Blades...~184 feet long
- Blades reach ~446 feet AGL heights

Examples of the Mayville Radar's Perspective on Local Wind Farms

March 2009 Winter Storm Snowfall Contamination

Radar-Based Rainfall Estimation Contamination

Contamination

Base Reflectivity (0.5°) Contamination (Low Impact Situation from Ashtabula Wind Farm)

Minimal Contamination

Base Reflectivity (0.5°) Contamination (Medium Impact Situation from Luverne Wind Farm)

Medium Contamination

ROC Research and Efforts to Find Mutually Beneficial Short-Term Solutions

- Funding studies of signal processing techniques by the Atmospheric Radar Research Center at the University of Oklahoma. One method could be knowledge based, taking in real-time wind turbine data (rotation rate, orientation, etc.)
- Establishing mutually agreed criteria in which wind farms could temporarily cease operations to give WFOs the ability to receive less cluttered radar data, such as in severe weather scenarios.

OU Research and Efforts to Find Mutually Beneficial Long-Term Solutions

 Oklahoma University's ARCC is investigating the possible use of adaptive null steering with phased array radar.

For More Information

- The Radar Operations Center's Website: http://www.roc.noaa.gov/WSR88D/
- American Wind Energy Association's Wind Siting Handbook